
Alpine Protocol
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: March 30th, 2021 - May 21th, 2021

Visit: Halborn.com

DRAFT

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) MISSING SLIPPAGE/MIN-RETURN CHECK IN THE TwoAssetBasket

CONTRACT - MEDIUM 12

Description 12

Code Location 12

Risk Level 12

Recommendation 12

3.2 (HAL-02) WORMHOLE MESSAGES ARE MISSING CRITICAL CHECKS - MEDIUM

14

Description 14

Code Location 14

Risk Level 14

Recommendation 15

3.3 (HAL-03) USE SafeErc20.Safeapprove - LOW 16

Description 16

Code Location 16

1

DRAFT



Recommendation 16

3.4 (HAL-04) THE CONTRACT SHOULD safeApprove(0) FIRST - LOW 17

Description 17

Code Location 17

Risk Level 17

Recommendation 17

3.5 (HAL-05) LACK OF PAUSE/UNPAUSE FUNCTIONALITY - LOW 19

Description 19

Code Location 19

Risk Level 19

Recommendation 19

3.6 (HAL-06) INCOMPATIBILITY WITH REBASING/DEFLATIONARY/INFLATION-

ARY TOKENS - INFORMATIONAL 20

Description 20

Risk Level 20

Recommendation 20

3.7 (HAL-07) COMMENTED TODO’s IDENTIFIED - INFORMATIONAL 21

Description 21

Risk Level 21

Recommendation 21

3.8 (HAL-08) GAS OPTIMIZATIONS - INFORMATIONAL 22

Description 22

Risk Level 22

Recommendation 22

2

DRAFT



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 03/30/2022 Gokberk Gulgun

0.2 Document Edits 04/10/2022 Luis Bendia

0.3 Draft Review 05/13/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

3

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com


4

EXECUTIVE OVERVIEW

DRAFT



1.1 INTRODUCTION

Alpine Protocol engaged Halborn to conduct a security audit on their smart

contracts beginning on March 30th, 2021 and ending on May 21th, 2021 .

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided one week for the engagement and assigned

a two full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

Currently, the Multiplyr platform is still under development. Although

the document address some findings, as established with the Alpine team,

other audits must be performed once the project is finished.

In summary, Halborn identified some security risks that were addressed

by the team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of the smart contract audit. While manual testing is recommended

to uncover flaws in logic, process, and implementation; automated testing

5

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



techniques help enhance coverage of smart contracts and can quickly

identify items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(solgraph)

• Manual Assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Dynamic Analysis (ganache-cli, brownie, hardhat).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

6

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



1.4 SCOPE

1. Moonwell Finance Token Sale Contracts

(a) Repository: Token Sale

(b) Commit ID: 726dcbaef18670d344fa5621c23c4db0e403583a

2. Out-of-Scope

(a) test/*.sol

Out-of-scope: External contract, libraries and financial related attacks.

8

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/Multiplyr/contracts/tree/audit-v1/src
https://github.com/moonwell-fi/moonwell-contracts-private/tree/726dcbaef18670d344fa5621c23c4db0e403583a/contracts/tokensale


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 3 3

IM
PA
CT

LIKELIHOOD

(HAL-04)
(HAL-05)

(HAL-01)
(HAL-02)

(HAL-03)

(HAL-06)
(HAL-07)
(HAL-08)

9

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) MISSING
SLIPPAGE/MIN-RETURN CHECK IN THE

TwoAssetBasket CONTRACT
Medium -

(HAL-02) WORMHOLE MESSAGES ARE
MISSING CRITICAL CHECKS

Medium -

(HAL-03) USE SafeErc20.Safeapprove Low -

(HAL-04) THE CONTRACT SHOULD
safeApprove(0) FIRST

Low -

(HAL-05) LACK OF PAUSE/UNPAUSE
FUNCTIONALITY

Low -

(HAL-06) INCOMPATIBILITY WITH
REBASING/DEFLATIONARY/INFLATIONARY

TOKENS
Informational -

(HAL-07) COMMENTED TODO’s
IDENTIFIED

Informational -

(HAL-08) GAS OPTIMIZATIONS Informational -

10

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



11

FINDINGS & TECH
DETAILS

DRAFT



3.1 (HAL-01) MISSING
SLIPPAGE/MIN-RETURN CHECK IN THE
TwoAssetBasket CONTRACT - MEDIUM

Description:

Trades can happen at a bad price and lead to receiving fewer tokens than

at a fair market price. The attacker’s profit is the protocol’s loss.

The contract is missing slippage checks, which can lead to being vulner-

able to sandwich attacks.

Code Location:

Listing 1: TwoAssetBasket.sol

173 uint256 [] memory btcAmounts = uniRouter.

ë swapExactTokensForTokens(

174 _tokensFromDollars(token1 , amountInputFromBtc),

175 0,

176 pathBtc ,

177 address(this),

178 block.timestamp

179 );

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Add minimum return amount checks. Accept a function parameter that can be

chosen by the transaction sender, then check that the actually received

amount is above this parameter. Alternatively, check if it’s feasible

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



to send these transactions directly to a miner such that they are not

visible in the public mempool.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.2 (HAL-02) WORMHOLE MESSAGES ARE
MISSING CRITICAL CHECKS - MEDIUM

Description:

During the code review, It has been observed wormhole messages are missing

several important checks.

Code Location:

Listing 2: L2Vault.sol

232 function receiveTVL(bytes calldata message) external {

233 (IWormhole.VM memory vm , bool valid , string memory

ë reason) = wormhole.parseAndVerifyVM(message);

234 require(valid , reason);

235

236 // TODO: check chain ID , emitter address

237 // Get tvl from payload

238 (uint256 tvl , bool received) = abi.decode(vm.payload ,

ë (uint256 , bool));

Listing 3: L1Vault.sol

77 function receiveMessage(bytes calldata message) external {

78 (IWormhole.VM memory vm , bool valid , string memory reason)

ë = wormhole.parseAndVerifyVM(message);

79 require(valid , reason);

80

81 // TODO: check chain ID , emitter address

Risk Level:

Likelihood - 3

Impact - 3

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



Recommendation:

Ensure that all necessary checks are placed in the vaults, as in the

example below. This can prevent possible misbehaves using the wormhole

infrastructure.

Listing 4

1 require(

2 incomingTokenTransferInfoVM.emitterChainId ==

ë ALPINE_CHAIN_ID ,

3 "message does not come from l2/l1 vaults"

4 );

5 require(

6 incomingTokenTransferInfoVM.emitterAddress ==

7 ALPINE_ADDRESS ,

8 "message does not come from vaults"

9 );

10

11 require(

12 !completedTokenTransfers[incomingTokenTransferInfoVM.hash

ë ],

13 "transfer info already processed"

14 );

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.3 (HAL-03) USE
SafeErc20.Safeapprove - LOW

Description:

The approve() function will fail for certain token implementations that do

not return a boolean value. Hence, it is recommended to use safeApprove().

Code Location:

Listing 5: L1Vault.sol (Lines 18,37)

91 function _transferFundsToL2(uint256 amount) internal {

92 token.approve(predicate , amount);

93 chainManager.depositFor(address(staging), address(token),

ë abi.encodePacked(amount));

94

95 // Let L2 know how much money we sent

96 uint64 sequence = wormhole.nextSequence(address(this));

97 bytes memory payload = abi.encodePacked(amount);

98 wormhole.publishMessage(uint32(sequence), payload , 4);

99 }

Recommendation:

Update to _token.safeApprove(spender, type(uint256).max) in the function.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.4 (HAL-04) THE CONTRACT SHOULD
safeApprove(0) FIRST - LOW

Description:

Some tokens (like USDT L199) do not work when changing the allowance from

an existing non-zero allowance value.

They must first be approved by zero, and then the actual allowance must

be approved.

Code Location:

Listing 6: L1Vault.sol

91 function _transferFundsToL2(uint256 amount) internal {

92 token.approve(predicate , amount);

93 chainManager.depositFor(address(staging), address(token),

ë abi.encodePacked(amount));

94

95 // Let L2 know how much money we sent

96 uint64 sequence = wormhole.nextSequence(address(this));

97 bytes memory payload = abi.encodePacked(amount);

98 wormhole.publishMessage(uint32(sequence), payload , 4);

99 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Approve with a zero amount first before setting the actual amount.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



Listing 7

1 IERC20(token).safeApprove(address(operator), 0);

2 IERC20(token).safeApprove(address(operator), amount);

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.5 (HAL-05) LACK OF PAUSE/UNPAUSE
FUNCTIONALITY - LOW

Description:

L2Vault is already inherited from the PausableUpgradeable. However, the

pause/unpause functionality has not been used.

In case a hack occurs, or an exploit is discovered, the team should be

able to pause functionality until the necessary changes are made to the

system. The deposits should be paused with Pause modifier.

Code Location:

Listing 8: L2Vault.sol

131 function deposit(uint256 amountToken) external {

132 _deposit(msg.sender , amountToken);

133 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Pause functionality on the contract can help to secure the funds quickly.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.6 (HAL-06) INCOMPATIBILITY WITH
REBASING/DEFLATIONARY/INFLATIONARY
TOKENS - INFORMATIONAL

Description:

The Alpine Protocol does not appear to support rebasing/deflationary/in-

flationary tokens whose balance changes during transfers or over time.

The necessary checks include at least verifying the amount of tokens

transferred to contracts before and after the actual transfer to infer

any fees/interest.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

The following measures can help to mitigate the issue:

• Make sure the check balance/after balance is equal to the amount of

any rebasing/inflation/deflation

• Add support in contracts for such tokens before accepting user-

supplied tokens

• Consider supporting deflationary/rebasing /etc. tokens by extra

check of balances before/after or strictly inform your users not to

use such tokens if they do not want to lose them

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.7 (HAL-07) COMMENTED TODO’s
IDENTIFIED - INFORMATIONAL

Description:

Multiplyr project is currently under development. In the source code,

there are many comments marking TODO. Although it is true that evidently

this has been already noticed by the Alpine Team, as agreed they are

marked down on a list for easy fix and focus on the coming audits.

The audit team identified the TODO comments on the next files:

- TwoAssetBasket.sol: L26, L209, L447

- BridgeScrow.sol: L56, L75

- BaseVault.sol: L32, L213, L214

- L2Vault.sol: L172, L236, L254, L288, L307

- L2AAVEStrategy.sol: L106, L187

- L1Vault.sol: L66, L79

- L1CompoundStrategy: L89, L110

- L1AnchorStrategy: L78

Please note that as this audit has been performed during several commits,

some lines may change across different versions.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Implement the code left having security in mind to make the platform

functional, robust and resilient.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.8 (HAL-08) GAS OPTIMIZATIONS -
INFORMATIONAL

Description:

Gas optimizations and additional safety checks are available for free

when using newer compiler versions and the optimizer.

In the loop below, the variable i is incremented using i++. It is known

that, in loops, using ++i costs less gas per iteration than i++.

- Forwarder.sol: L12

- BaseVault.sol: L197, L217, L274, L341

Caching variables whenever inside a loop helps to save gas, as the most

gas expensive access are the ones to storage.

• Forwarder.sol: L12 (requests.length variable)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This is not applicable outside of loops.

It is recommended to create a memory variable that caches the storage

variable to avoid accessing the storage more times than required, since

it is more expensive than memory accesses.

Note that these two mechanisms can be applied in different context in the

source code.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



THANK YOU FOR CHOOSING

DRAFT


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation



