
AffineDefi Restaking Security Review

Version 2.0

02.05.2024-07-05.2024

Conducted by:
MaslarovK, Independent Security Researcher

Affine Defi - Restaking Security Review May 07, 2024

Table of Contents

1 About MaslarovK 3

2 Disclaimer 3

3 Risk classification 3
3.1 Impact . 3
3.2 Likelihood . 3
3.3 Actions required by severity level . 3

4 Executive summary 4

5 Findings 5
5.1 High risk . 5

5.1.1 Wrong amount passed in calculation in the AffineDelegator::delegate 5
5.1.2 Burning wrong amount of shares in UltraLRT::_withdraw 6
5.1.3 Wrong parameter passed to UltraLRT::_delegatorWithdrawRequest in Ul-

traLRT::_liquidationRequest . 7
5.2 Low risk . 8

5.2.1 Consider decreasing the maxDeposit for a user on every deposit 8
5.3 Informational . 8

5.3.1 Consider refactoring the immutable veriables to constant as they are initial-
ized upon declaration. 8

2

Affine Defi - Restaking Security Review May 07, 2024

1 About MaslarovK

MaslarovK is an independent security researcher from Bulgaria. He has secured various protocols
through private audits and public contests - Secured ~$5M in TVL.

2 Disclaimer

Audits are a time, resource, and expertise bound effort where trained experts evaluate smart con-
tracts using a combination of automated and manual techniques to identify as many vulnerabilities
as possible. Audits can show the presence of vulnerabilities but not their absence.

3 Risk classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

3.1 Impact

• High - leads to a significant loss of assets in the protocol or significantly harms a group of users.
• Medium - only a small amount of funds can be lost or a functionality of the protocol is affected.
• Low - any kind of unexpected behaviour that’s not so critical.

3.2 Likelihood

• High - direct attack vector; the cost is relatively low to the amount of funds that can be lost.
• Medium - only conditionally incentivized attack vector, but still relatively likely.
• Low - too many or too unlikely assumptions; provides little or no incentive.

3.3 Actions required by severity level

• Critical - client must fix the issue.
• High - client must fix the issue.
• Medium - client should fix the issue.
• Low - client could fix the issue.

3

https://twitter.com/MaslarovK

Affine Defi - Restaking Security Review May 07, 2024

4 Executive summary

Overview

Project Name AffineDeFi
Repository https://github.com/AffineLabs/contracts/
Commit hash 4d28ca86adab6b9a9e342044516265e0504e0e05
Resolution 173b930a3eb93d2104172595a868c6b3b8c73247
Documentation N/A
Methods Manual review & testing

Scope

vaults/restaking/AffineDelegator.sol
vaults/restaking/staking/AffineRestaking.sol
vaults/restaking/staking/DelegatorBeacon.sol
vaults/restaking/staking/IDelegator.sol
vaults/restaking/staking/UltraLRT.sol
vaults/restaking/staking/UltraLRTStorage.sol
vaults/restaking/staking/WithdrawalEscrowV2.sol

Issues Found

Critical risk 0
High risk 3
Medium risk 0
Low risk 1
Informational 1

4

Affine Defi - Restaking Security Review May 07, 2024

5 Findings

5.1 High risk
5.1.1 Wrong amount passed in calculation in the AffineDelegator::delegate

Severity: High risk

Context: AffineDelegator.sol#L676

Description: In the AffineDelegator::delegate

function delegate(uint256 amount) external onlyVault {
// take stETH from vault
stETH.transferFrom(address(vault), address(this), amount);

// deposit into strategy
strategyManager.depositIntoStrategy(address(stEthStrategy), address(stETH),

stETH.balanceOf(address(this)));

// delegate to operator if not already
if (!isDelegated) {

_delegateToOperator();
}

}

stETH.balanceOf(address(this) is used when depositing into strategy instead of amount. However
this is wrong because if stETH.balanceOf(address(this) is different than amount which is highly
possible - it will mess the accounting in the UltraLRT::delegateToDelegator

function delegateToDelegator(address _delegator, uint256 amount) external onlyRole(
HARVESTER) {

IDelegator delegator = IDelegator(_delegator);

DelegatorInfo memory info = delegatorMap[_delegator];

if (!info.isActive) revert ReStakingErrors.InactiveDelegator();
if (vaultAssets() < amount) revert ReStakingErrors.InsufficientLiquidAssets

();

// delegate
ERC20(asset()).approve(_delegator, amount);
delegator.delegate(amount);

info.balance += uint248(amount);
delegatorMap[_delegator] = info;
delegatorAssets += amount;

}

Recommendation: Implement the following changes, I have described them in the comments:
function delegate(uint256 amount) external onlyVault {

// take stETH from vault
stETH.transferFrom(address(vault), address(this), amount);

// deposit into strategy
strategyManager.depositIntoStrategy(address(stEthStrategy), address(stETH),

amount);

5

https://github.com/AffineLabs/contracts/blob/4d28ca86adab6b9a9e342044516265e0504e0e05/src/vaults/restaking/AffineDelegator.sol#L67

Affine Defi - Restaking Security Review May 07, 2024

// delegate to operator if not already
if (!isDelegated) {

_delegateToOperator();
}

}

Resolution: Fixed

5.1.2 Burning wrong amount of shares in UltraLRT::_withdraw

Severity: High risk

Context: UltraLRT.sol#L249

Description: In the AffineDelegator::delegate

function _withdraw(address caller, address receiver, address owner, uint256
assets, uint256 shares)
internal
override

{
if (caller != owner) {

_spendAllowance(owner, caller, shares);
}

// If _asset is ERC777, ‘transfer‘ can trigger a reentrancy AFTER the
transfer happens through the

// ‘tokensReceived‘ hook. On the other hand, the ‘tokensToSend‘ hook, that
is triggered before the transfer,

// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any

reentrancy would happen after the
// shares are burned and after the assets are transfered, which is a valid

state.

// TODO: calculate fees

if (!canWithdraw(assets)) {
// do withdrawal request
_transfer(_msgSender(), address(escrow), shares);
escrow.registerWithdrawalRequest(receiver, shares);
// do immediate withdrawal request for user
_liquidationRequest(assets);
return;

}
_burn(owner, shares);

uint256 assetsToReceive = Math.min(vaultAssets(), assets);

if (assetsToReceive + ST_ETH_TRANSFER_BUFFER < assets) revert
ReStakingErrors.InsufficientLiquidAssets();

ERC20(asset()).safeTransfer(receiver, assetsToReceive);

6

https://github.com/AffineLabs/contracts/blob/4d28ca86adab6b9a9e342044516265e0504e0e05/src/vaults/restaking/UltraLRT.sol#L249

Affine Defi - Restaking Security Review May 07, 2024

emit Withdraw(caller, receiver, owner, assetsToReceive, shares);
}

When burning the shares, you are burning the amount corresponding to the assets, but after that if
the vaultAssets()< assets, the amount of assets to transfer will be less than the one needed for the
shares burned.

Recommendation: Calculate the shares when you know what are the assetsToReceive.

Resolution: Aknowledged

5.1.3 Wrong parameter passed to UltraLRT::_delegatorWithdrawRequest in
UltraLRT::_liquidationRequest

Severity: High risk

Context: UltraLRT.sol#L305

Description: In the UltraLRT::_liquidationRequest

function _liquidationRequest(uint256 assets) internal {
for (uint256 i = 0; i < delegatorCount; i++) {

IDelegator delegator = delegatorQueue[i];
uint256 assetsToRequest = Math.min(delegator.withdrawableAssets(),

assets);
_delegatorWithdrawRequest(delegator, assetsToRequest);
if (assetsToRequest == assets) {

break;
}
assets -= assetsToRequest;

}
}

When calculating the assetsToRequest, if assets < delegator.withdrawableAssets() then
assetsToRequest = assetsand ifdelegator.withdrawableAssets()< assets thenassetsToRequest
= delegator.withdrawableAssets(). So practically, there is no scenario where assets >

delegator.withdrawableAssets(), which will make the if check inUltraLRT::_delegatorWithdrawRequest
impossible to happen
function _delegatorWithdrawRequest(IDelegator delegator, uint256 assets) internal {

if (assets > delegator.withdrawableAssets()) revert ReStakingErrors.
ExceedsDelegatorWithdrawableAssets();

delegator.requestWithdrawal(assets);
}

Recommendation: Change the function as follows, passing the right parameter:
function _liquidationRequest(uint256 assets) internal {

for (uint256 i = 0; i < delegatorCount; i++) {
IDelegator delegator = delegatorQueue[i];
uint256 assetsToRequest = Math.min(delegator.withdrawableAssets(),

assets);
_delegatorWithdrawRequest(delegator, assets);
if (assetsToRequest == assets) {

break;

7

https://github.com/AffineLabs/contracts/blob/4d28ca86adab6b9a9e342044516265e0504e0e05/src/vaults/restaking/UltraLRT.sol#L305

Affine Defi - Restaking Security Review May 07, 2024

}
assets -= assetsToRequest;

}
}

Resolution: Fixed

5.2 Low risk
5.2.1 Consider decreasing the maxDeposit for a user on every deposit

Severity: High risk

Context: TrotelCoinStakingV2.sol#L136-L140

Description: In the UltraLRT::maxDeposit, the amount is set to type(uint256).max, which is fine,
but given the fact that the function can be overriden and different value may be set - would suggest
decreasing it on every deposit with the amoun deposited.
function maxDeposit(address) public view virtual override returns (uint256) {

return type(uint256).max;
}

Resolution: Aknowledged

5.3 Informational
5.3.1 Consider refactoring the immutable veriables to constant as they are initialized upon

declaration.

Severity: High risk

Context: TrotelCoinStakingV2.sol#L136-L140

Description:
IStrategyManager public immutable strategyManager = IStrategyManager(0

x858646372CC42E1A627fcE94aa7A7033e7CF075A); // StrategyManager for Eigenlayer
IDelegationManager public immutable delegationManager =

IDelegationManager(0x39053D51B77DC0d36036Fc1fCc8Cb819df8Ef37A); //
DelegationManager for Eigenlayer

IStrategy public immutable stEthStrategy = IStrategy(0
x93c4b944D05dfe6df7645A86cd2206016c51564D); // stETH strategy on Eigenlayer

Resolution: Fixed

8

https://github.com/TrotelCoin/trotelcoin-contracts/blob/55a9581f1146db40017047c6e17f8797a60cd376/staking/TrotelCoinStakingV2.sol#L136-L140
https://github.com/TrotelCoin/trotelcoin-contracts/blob/55a9581f1146db40017047c6e17f8797a60cd376/staking/TrotelCoinStakingV2.sol#L136-L140

	About MaslarovK
	Disclaimer
	Risk classification
	Impact
	Likelihood
	Actions required by severity level

	Executive summary
	Findings
	High risk
	Wrong amount passed in calculation in the AffineDelegator::delegate
	Burning wrong amount of shares in UltraLRT::_withdraw
	Wrong parameter passed to UltraLRT::_delegatorWithdrawRequest in UltraLRT::_liquidationRequest

	Low risk
	Consider decreasing the maxDeposit for a user on every deposit

	Informational
	Consider refactoring the immutable veriables to constant as they are initialized upon declaration.

